
NASA/CRB2000-209416

A Simulation Study of Paced TCP

Joanna Kulik, Robert Coulter, Dennis Rockwell, and Craig Partridge

BBN Technologies, Cambridge, Massachusetts

January 2000

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the Lead Center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the

NASA STI Database, the largest collection of
aeronautical and space science STI in the world.

The Program Office is also NASA's institutional

mechanism for disseminating the results of its
research and development activities. These results

are published by NASA in the NASA STI Report
Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant

phase of research that present the results of
NASA programs and include extensive data

or theoretical analysis. Includes compilations
of significant scientific and technical data and

information deemed to be of continuing
reference value. NASA's counterpart of peer-

reviewed formal professional papers but

has less stringent limitations on manuscript
length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or
of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public Interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific

and technical material pertinent to NASA's
mission.

Specialized services that complement the STI
Program Office's diverse offerings include

creating custom thesauri, building customized
data bases, organizing and publishing research

results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page
at http.'//www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076

NASA/CR--2000-209416

A Simulation Study of Paced TCP

Joanna Kulik, Robert Coulter, Dennis Rockwell, and Craig Partridge

BBN Technologies, Cambridge, Massachusetts

Prepared under Contract N00600-92-C-3377

National Aeronautics and

Space Administration

Glenn Research Center

January 2000

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076
Price Code: A03

Available from

National Technical Information Service

5285 Port Royal Road
Springfield, VA 22100

Price Code: A03

A Simulation Study of Paced TCP

,Joanna B:ulik, Robert Coulter, Dennis Rockwell. and Craig Partridge

BBN Technologies *

Cambridge, Massachusetts

Abstract

In this paper, we study the performance of paced TCP, a modified version of TCP designed

especially for high delay-bandwidth networks. In typical networks. TCP optimizes its send-rate by

transmitting increasingly large bursts, or windows, of packets, one burst per round-trip time. until it

reaches a maximum window-size, which corresponds to the full capacity of the network. In a network

with a high delay-bandwidth product, however, TCP's maximum window-size may be larger than the

queue size of the intermediate routers, and routers will begin to drop packets as soon as the windows

become too large for the router queues. The TCP sender then concludes that the bottleneck capacity

of the network has been reached, and it limits its send-rate accordingly. Partridge proposed paced

TCP as a means of soh'ing the problem of queueing bottlenecks. A sender using paced TCP would

release packets in multiple, small bursts during a round-trip time in which ordinary TCP would

release a single, large burst of packets. This approach allows the sender to increase its send-rate

to the maximum window size without encountering queueing bottlenecks. This paper describes the

performance of paced TCP in a sinmlated network and discusses implementation details that can

affect the performance of paced TCP.

1 Introduction

TCP was originally designed to run over a variety of communication links, including wireless and high-

bandwidth links. Although researchers understand a great deal about TCP's strengths and weaknesses

in the networks of today, recent technological advances in satellite and fiber-optic networks have caused

them to re-evaluate TCP's purported flexibility. They have already identified some major obstacles to

the use of TCP in these networks. One problem that is common to both satellite and fiber-optic networks

is that the capacity of these networks, determined by the product of the bandwidth and the delay of

the network, can be more than ten times greater than in conventional networks. The mismatch between

the high capacity of these networks and available storage at the intermediate routers in the network

poses unique problems for TCP. Given an ever-growing interest in these new network technologies and

the centrality of TCP in network communication, further investigation of obstacles to the use of TCP in

high delay-bandwidth networks is a matter of pressing importance.

This paper examines paced TCP, a modified version of TCP designed to overcome the problems of

queueing bottlenecks in a network with a high delay-bandwidth product. In a typical network. TCP

optimizes its send-rate by releasing increasingly large bursts, or windows, of packets, one burst per

round-trip time, to the receiver until it reaches its maximum window-size, at which point it has reached

the full capacity of the network. In a network with a high delay-bandwidth product, however, TCP's

maximum window-size may be larger than the queue capacity of some of the network's intermediate

routers. Larger windows overload such router queues, and the routers begin to drop packets. TCP

interprets dropped packets as congestion at the bottleneck, even though no congestion is present. A

single sender running TCP has simply released too many packets into the network in too short a time:

"This work would not have been possible without the additional contributions of Tim Shepard and Koling Chang.

NASA/CR--2000- 209416 1

bottleneck queue

Figure 1: Topology for a TCP conuection running over a single bottleneck-link.

Parameter Low-delay network

Round-trip Delay 50ms
Bottleneck bandwidth 1.5Mb

Packet size 1024 bytes

high-delay network

(large queue) (small queue)
500ms 500ms

1.SMb 1.SMb

1024 bytes 1024 bytes

Bottleneck queue length 10 packets 100 packets 10 packets

Network capacity/ 9 packets 91 packets 91 packets
TCP maximum window

Table 1: Setup for different TCP connections running overa single bottleneck link.

the queue cannot handle the overload; and TCP detects its self-produced queueing bottleneck. The

disparity between the total capacity of a high delay-bandwidth network and the capacity of individual

queues in the network is enough to make TCP's algorithms break down.

Conskler the three concrete networks whose characteristics are listed in Table 1 and depicted in
Figure 1. The first is a low-delay network; its round trip times are 50ms. The second and third networks

have high delays: round trip times for these networks are typical for a satellite network, 500ms.

Figure 2 gives performance characteristics over time in the low-delay network. This performance is
a flmction of the bottleneck bandwidth, the network delay, and the packet size. In this network, as in

most low-delay networks, the capacity of the bottleneck queue is roughly equal to the capacity of the

network itself. The sender running TCP begins in slow-start mode, with an initial window of 2 packets.

During each tlTT, the sender receives a new acknowledgment and increases its window by 1 packet. As
a result, TCP releases an exponentially increasing number of packets into the network every round-trip

time (RTT), until finally after 5 RTTs (or 250ms), the window size plateaus at the maximum allowable

size. At this point, TCP has achieved its goal and is fully utilizing the bottleneck link.

An important thing to note about Figure 2 is the correspondence between the queue length and

changes in window size. Every time the TCP sender receives a single acknowledgment, it increases the

window size by one, and injects two more packets into the network. Because acknowledgments return

to the sender spaced apart by the bottleneck service time, so does each pair of packets. Because the

bottleneck server only has time to process one of these packets before the next pair arrives, one packet

accumulates in the queue for every pair that arrives. More generally, when the TCP window increases
from II" to 2 * ll" packets during one RTT, the maximum size of the queue for that time-interval will be

IV. If the maxinmm capacity of the network (and the maximum window size) of the network is II)nax

packets, then the bottleneck queue nmst be able to store at least llmax/2 packets. Many TCP receivers

actually send "delayed acknowledgments" back to the sender, only acknowledging every other packet

that they receive. Following the same logic, if the TCP receiver uses delayed acknowledgments, the

bottleneck queue must be able to store at least ll'max/3 packets in order to accommodate the sender's

maxinmm window in a single burst.

NASA/CR--2000-209416 2

Single Stream Over 50ms delay link, max queue=10

L

windOW size --

cl_e_e)engtl_

[-i

[....... i
i i

3 4

Time in RTTs (1 RTT = 50 ms)

Figure 2: Window history of single TCP connection over a low-delay link. During its initial slow-start

phase, the TCP window doubles every round trip time. Every time the window increases. TCP injects

a window-sized burst of packets into the network. When the burst reaches the bottleneck router, the

queue in the network builds up, and then drains before the next burst arrives. TCP stops increasing the

window when it reaches the maxinmm window size of 9 packets.

NASA/CR--2000- 209416 3

100

90

8O

7O

6O

5O

40-

30-

20-

10

0

Single Stream Over 5C0 me delay linK, mcx queue=lO0

i i f i i i i

window size

queue length

/
/
/
/

1 2 3 4 5 6 7

Time in RTTs (1 RTT = 500 ms)

8 g

Figure 3: Window history of single TCP connection over a high-delay link. The history of this connection

closely resembles the history of a low-delay connection, as depicted in Figure 2. However. because the

delay of the network is higher, the total capacity of the network is also larger. TCP therefore takes more
RTTs to ramp up to the maximum window than for a low-delay connection.

IO0

go

8O

70

60

50

40

30.

20.

10

0

Single Stream Over 5(_ me delay linK, max queue=lO

i = a = i

J

/
Idl.........................,................,.......,,

20 40 60 60

Time in RTTs (1 RTT = 500 ms)

window size --

queue length

8O 100

Figure 4: Window history of single TCP connection over a high-delay link with a short bottleneck

queue. During slow-start. TCP overruns the bottleneck queue in the network before it is able to reach

the maximum window size. TCP is only able to reach the maximum window size much later, during
using congestion-avoidance.

NASA/CR--2000-209416 4

In perfectconditions.TCPwouldachievetheperformancedepictedin 3. Manyroutersin typical
networksarenotconfiguredto anticipatetilelargecapacityofhigh-delaylinks,whichisreflectedin their
relativelysmallqueuelengths.Figure4showsanotherhigh-delaynetworkwitha 500msRTT.but in
thisnetworkthebottleneckqueuelengthis 10packets,muchlessthanhalfthemaximumcapacityof
thenetwork.Asbefore,whentheTCPsenderincreasesitswindoweveryRTT.it sendsmoreandmore
packetsinto thenetwork.However,ill thiscase,thebottleneckserverisnot ableto drainthequeue
asfastasit fills up,andtheserverdropspacketsthat arrivewhentile queueis full. Oncethe TCP
senderdetectsthelostpackets,it reducesitswindowto 2packetsandinitiatesslow-startagain.When
it reacheshalfits previousmaximumwindow,it exitsslow-startandenterscongestion-avoidancemode.
In congestion-avoidance,theTCPsenderincreasesits windowby 1everyRTT.ratherthandoublingit.
Thisstrategyisreflectedin a linearincreasein thewindowsize.After100RTTs (50 seconds), TCP

finally reaches its maximum window of 91 packets. In fact. if tile queues in the network are less than

half the capacity of the network, the time it takes TCP to reach its full capacity will grow as a function

of O(RTT"-), significantly worse than the already poor growth of O(RTTlog., RTT). If we had used a
short TCP connection, like the Web commctions that dominate Internet traffic today, in this example.

the connection would have ended long before it had the chance to get off the ground.

Pacing is one possible solution to this problem [8]. The idea behind pacing is simple. Instead of

sending an entire window of packets in a single burst at the begimfing of each round-trip time, the TCP

sender should send out the packets in a steady stream over the entire course of a round-trip time. For

example, if the current TCP window is 4 packets and the RTT is 500ms, then the TCP sender should

send out. 1 packet every 125ms, instead of 4 packets every 500ms. An interval of 125ms is enough time

for a 1.5Mb server to process a single packet, and therefore the queue in the network should never build

up. In fact, in a paced TCP implementation, queueing bottlenecks should occur only when the TCP

sender is genuinely sending at a rate that is too fast for the server itself. Pacing is an attractive solution

to the queueing-bottleneck problem for at least two reasons. First, it relieves network designers of having

to guess at. buffer sizes based on typical round-trip delays. Second, it can be implemented by modifying

TCP senders only. Pacing does not require participation of the network's interinediate routers or TCP
receivers.

This rest of this paper examines TCP pacing in greater detail. Though we will draw examples fl'om

high-delay networks to illustrate queueing bottlenecks, it is important to keep in mind that queueing

bottlenecks may occur in any network where the product of the delay and the bandwidth is high. The

specific contribution of the delay in the product is not critical to causing a queueing bottleneck, it simply
increases the cost when the bottleneck occurs. Section 2 of this paper discusses the issues involved in

implementing TCP Pacing. Section 3 describes several TCP algorithms and their significance with

regards to high-delay networks and TCP pacing. Section 4 presents TCP pacing performance results
based on the ns network simulator. Finally, Section 5 gives an overview of the results and discusses

possible directions for future work.

NASA/CR--2000-209416 5

2 Pacing Implementation

Several factors are important to consider in implementing paced TCP. First is the need for modification

of the TCP/IP protocol for high bandwidth-delay networks. For example, the TCP/IP sequence number

space nmst be expanded to prevent the TCP/IP's sequence numbers from wrapping around within

seconds in a high bandwidth-delay network. Second, paced TCP needs to use high-granularity timers

in order to guarantee the release of a steady stream of packets. The granularity of this timer can have

both positive and negative effects on the performance of paced TCP. In this section we discuss both

modification of the TCP/IP protocol for high bandwidth-delay networks and the granularity of the

timers used in pacing. In addition, we propose an implementation scheme for paced TCP based upon

the leak,v-bucket algorithm.

2.1 TCP/IP Protocol Modifications for High Bandwidth-Delay Networks

Several researchers have noted that the TCP/IP protocols now in use are not suited to high delay-

bandwidth networks [9]. The TCP/IP packet headers contain several fields that TCP/IP agents use to

keep track of their progress, and these fields simply cannot accommodate the large quantities invoh,ed in

high delay-bandwidth commotions. The inadequacy of these fields is the TCP/IP analogue of the Y2K

problem. Fields that must be modified for high delay-bandwidth networks include IP Fragmentation,
TCP sequence number, and TCP maximum window size. The IP Time to Live field must also be modified

in networks where the delay component of the bandwidth-delay product is high. For tile remainder of this
paper, we will assume that paced TCP for high delay-bandwidth networks includes these modifications.

2.2 High-Granularity Timers and Pacing

A sender using paced TCP must send out a stream of packets at specific intervals of time. and a sender

needs to use high-granularity timers to do this. It is possible to modi_ the granularity of operating
system timers to do this, but the modifications carry consequences. Each TCP timer-handler incurs a

significant overhead, so the more frequently TCP schedules timer interrupts, the more of an effect TCP

pacing will have on the overall performance of the system. More specifically, given the following system

parameters:

TCP window:

Round-trip time:

TCP timer frequency:

Event handling cost:
Machine Power:

II" (packets)

RTT (seconds)

f = W/RTT (events/second)
c (cycle/event)

P (cycle/second)

the s3"stenl cost, SC, is given by the following equation:

SC = f * c/P -+

ll',c
SC -

RTT * P
(1)

We can reduce the overall system cost by pacing tile release of bursts of packets, rather than individual

packets. Assuming that TCP sends out bursts of BST packets, we obtain the following modified equation

for s,vstem cost:

(2)

f = W/(BST, RTT) -+
lI'*c

SC =
P * BST * RTT

It may be tempting to raise BST arbitrarily high to keep system costs to a minimum, but this approach

can not be recommended. Every time TCP sends out a BST burst, BST- 1 packets pile up at the

NASA/CR--2000-209416 6

bottleneckqueue.Wecancharacterizetheloadoil thebottleneckqueue,I, as follows:

IV I1

I = f, (BST- 1) - RTT RTT, BST (3)

Finally, if the maxinmm queue size in tile network is q, then paced TCP should ensure that B,_gT < q.

Timer granularity also has a direct effect on the rates at which TCP can send packets. Suppose that

paced TCP uses a 9 = 1ms timer and BST = 1. TCP can send 1 packet ever)" lms, every 2ms, every

3ms, etc. It can not, however, send out 1 packet every 1.5ms, every 4.5, or any other non-integer multiple

of lms. This observation leads to the following equation, which relates the window sizes that TCP can

support (W packets), the connection round-trip time (RTT secouds), and the granularity of the system

timer (g seconds):

BST * RTT
W - n = 1,2.3.4 (4)

7_,g

So, for instance, a paced TCP connection with RTT = 500ms, maximum timer granularity 9 = hns,

and BST = 1 can support windows of sizes 500, 250, 125. 100, 83. and so forth.

2.3 A Leaky-Bucket Scheme for Paced TCP

In order to implement paced TCP, we propose using a modified leaky-bucket scheme for admitting packets

into the network. In a typical leaky-bucket scheme, packets can only enter the network if they obtain

a "token" from a bucket of tokens. If a packet wishes to enter the network and the bucket is empEv, it

nmst wait until a token becomes ax,aitable in order to enter the network. There are two parameters that

govern the behavior of a leaky-bucket flow: the maximum number of packets that the bucket can hold

and the rate at which the bucket is replenished with tokens. By altering the size of the bucket we can

prevent large bursts from entering the network. By limiting the rate at which we refill the bucket with

tokens, we can limit the frequency with which these bursts can enter the network.

In paced TCP, just as in a leaky-bucket scheme, TCP tries to linfit the size of bursts entering tile

network. However, TCP also needs to be able to modify the send rate of the leaky-bucket flow to

mimic changes in its window. By making a couple of simple modifications to the standard leaky-bucket

algorithm, we can implement paced TCP. First. a paced TCP refills its token bucket at dynamically

changing intervals of time. So. for instance, imagine that the timer granularity is g = lms and BST = 4

packets. Then TCP's maximum bucket size will be 4 packets, and TCP will fill up the bucket with

4 tokens at time 0.000. Assume also that TCP's send rate (as determined by the current congestion
window size and round-trip time) a time 0.000 is 1 packet/ms (or 4 packets every 4ms). TCP would then
set its next bucket refill-time to occur at time .004 seconds. Then, at time .001 seconds. TCP receives an

acknowledgment and doubles its send-rate to 2 packets/ms (or 4 packets every 2ms). TCP would then

revise its next refill-time to occur at time .002 seconds from the original .004 seconds. This approach is

aggressive in the sense that, when TCP's send-rate changes, the new rate is effective retroactively to tile

beginning of the current refill period. This aggressive approach allows TCP to adapt quickly to changes

in its window even though it only refills the bucket at coarse-grained intervals.

To limit overhead, TCP keeps track of bucket refill-times using state variables and minimizes its use

of timers to refill the bucket. If TCP has packets to send and it does not use up all the tokens in the

bucket, it simply takes note of how many tokens are left, and when the bucket should next be refilled.

The next time TCP has packets to send, it checks to see whether the last bucket refill-time has past.

refills the bucket as necessary, and continues as before. The only time that TCP should use a timer to
refill the bucket is when it uses up all the tokens in a bucket and has more packets to send. This approach

takes advantage of the fact that TCP wakes up frequently on its own. due to retm'ning acknowledgments,

and that scheduling timers to wake up at these times is redundant and wasteflfl. During slow-start, TCP
should be able rely on acknowledgments for approximately half of its refills, reducing the pacing overhead

to 50% less than that given in Equation 2.

NASAJCR--2000- 209416 7

3 Experimental Algorithms

In order to study the effect of pacing on TCP, we examined two existing TCP algorithms and one

proposed TCP algorithm that is not yet widely used. In addition, we discuss a technique that is especially
well-suited for estimating window size in high bandwidth-delay networks.

3.1 Classic TCP

Classic TCP is TCP as it was originally proposed by Jacobson [3]. Classic TCP maintains four state

variables to keep track of its progress: the current congestion window (IV), the maximum congestion

window (If'max), the current slow-start threshold (ssthresh), and an estimate of the current round-trip

time (RTT). l_'sing these variables, classic TCP alternates between three modes of operation:

• Slow-start. In this mode. TCP sends an exponentially increasing number of packets to the receiver
ever.v RTT. Starting with an initial congestion window of IV = 2. the TCP sender increases the

congestion by 1 every time it receives an acknowledgment, until it reaches either the maximum

window, lI'max, or the slow-start threshold, ssthresh. If it reaches ssthresh, TCP enters congestion-

avoidance mode. If TCP detects that a packet has been lost in the network, it sets ssthresh = 11"/2,
and enters exponential-backoff mode.

• Congestion-avoidance. In congestion-avoidance mode, TCP sends a linearly increasing number of

packets every RTT. It does this by increasing its window by 1 every RTT. if The sender does not

receive an acknowledgment for an outstanding packet within a certain mnount of time (determined
by the RTT), it sets ssthresh = I1/2, and enters exponential-backoff mode. The sender never
increases 11" past H)nax.

• Exponential-backoff. In this mode the sender attempts to recover fi'Onl loss. It repeatedly sends a

cop3" of the last unacknowledged packet to the receiver, exponentially increasing the time between

each attempt, until the receiver acknowledges the packet. Once the receiver acknowledges the
packet, the sender goes back to slow-start mode.

In practice, existing TCP implementations almost always use more sophisticated congestion control
algorithms than these. We use classic TCP in this study, however, because it provides us with a baseline
for our comparisons.

3.2 TCP-Reno

TCP-Reno incorporates Jacobson's fast-retransmit and fast-recovery algorithms to improve upon the

way that classic TCP recovers from individual packet losses [4]. In fast-retransmit, the TCP receiver
repeatedly acknowledges the last in-order packet that it has received. When the TCP sender receives

the duplicate acknowledgments, it infers that a packet was lost, and resends that packet. The advantage

of this strategy is that the TCP sender can detect lost packets much sooner than it might otherwise

using timeouts. If fast-retransmit successfully recovers a lost packet, TCP may infer from incoming

acknowledgments a that only a few packets were lost. In this case, it may perform a fast-recovery, which
means that it will immediately set its window to lI" = ssthresh and enter congestion-avoidance mode.

The advantage of this strategy is that it circumvents the expensive slow-start process in the cases where

only a few packets in the network were lost. TCP-Reno is the most widely deployed variant of TCP used
in the Internet today.

3.3 TCP-FACK

TCP-FACK takes an even more aggressive approach to loss-recovery by providing the receiver with an

explicit means of describing losses [6]. When a TCP-FACK receiver receives non-contiguous data, it also

sends duplicate acks back to the receiver, as is the case in TCP-Reno. These acknowledgments, called

NASA/CR--2000-209416 8

SACKs,carrythe sameinformationasstandardTCPacknowledgments,plusadditionalinformation
explicitlylistingthedatathathasbeencorrectlyreceived.WhentheTCP-FACKreceiverreceivesthese
acknowledgments,it knowsexactlywhichdatahasbeenlost.andwhichdatashouldberesent.TCP-
FACKsenderscanalsousethedatacontainedinSACKsto gleaninformationabout,thecongestionstate
of thenetworkandthento makeintelligentdecisionsaboutwhatdatato resendandwhen.Though
TCP-Fackhasnotyetbeenwidelydeployedin theInternet.preliminarysimulationstudiesshowthat
TCP-FACKcanuseavailablebandwidthat thebottleneckservermoreeffectivelythanstandardTCP
implementations,leadingto significantimprovementsin throughputperformance.

3.4 Packet-Pair Probes

A TCPsendercan estimate the service rate of the bottleneck link using a technique called packet-pair

probes [5] [2]. In this technique, the sender sends out. a pair of packets, back-to-back, and waits for their

corresponding acknowledgments. When the bottleneck server receives the packets, it will process them
sequentially, and they will exit the bottleneck server with a delay between them corresponding to the

bottleneck service time. The end receiver will, in turn, acknowledge these packets as soon as they arrive.

\\'hen the sender finally receives the acknowledgments, it can interpret the spacing between the packets

to glean information about the bottleneck server. As noted in [5], the spacing of the packet-pair probes
can have several meanings. If the bottleneck server serves packets in a first-in-first-out order, as is the

case with most. touters in the Internet today, then the interval will only reflect the maximum available

bandwidth of the bottleneck server. If the bottleneck server serves packets in a round-robin order, as

is the case in a fair-queueing router [1], then the interval reflects the fraction of the total bottleneck

bandwidth currently available at the server.
It. is easy to see why current TCP implementations do not use packet-pair probes: TCP contains

its own mechanisms for estimating bandwidth and over the)'ears these mechanisms have served their

purpose perfectly well. However, there are a number of ways that packet-pair probes might be used

to improve TCP's performance in a high bandwidth-delay network. First. under-estimating or over-

estimating TCP's maximum window can adversely impact TCP_s throughput performance, a problem

that only worsens as the network delay increases. A TCP sender may be able to use packet-pair probes

to set TCP's initial maximum window size, ll'max. Second, in a system where the bottleneck server

implements fair-queueing, TCP can actually use packet-probes to estimate the congestion window, ll',
itself.

NASA/CR--2000-209416 9

4 Simulation Results

In this subsection we present the results of several simulations that we performed to evaluate the per-

formance of TCP pacing.

4.1 ns Simulator

ns [7] is an event-driven network simulator with extensive support for simulation of TCP, routing, and

multicast protocols. To implement TCP pacing, we extended ns's built-in TCP agents using the pacing

algorittnn described in the previous subsection, as well as added support for packet-pair probes. The

behavior of the modified TCP agents can be customized by turning pacing on or off. setting the pacing

burst size and the TCP timer grmmlarity, and turning packet-probes on or off. This simulator produces

several metrics that track the progress of TCPs:

Congestion window. The size of TCP's congestion window, ll'. limits the number of packets that

TCP can inject into the network at any time. The evolution of this window during the course of

a TCP connection has a direct impact upon the total throughput of the connection.

Packets in the pipe. In a standard TCP implementation, TCP attempts to keep the number of

packets in the network pipe, i. always equal to the congestion window, IV. If the window IV jumps
up suddenly, then TCP sends an instantaneous burst of packets into the network to match the

change in the window IV. It is exactly this behavior that a paced version of TCP attempts to

avoid. By observing the evolution of i with respect to IV, we can verify the correctness of our

pacing algorithms.

Bottleneck queue length. We expect to see a standard TCP implementation overrun the queues

long before it reaches its maximum window. In a paced TCP implementation, however, we should
not see the queues build up at all.

Overall throughput. The overall throughput of a connection measures the number of packets that

the TCP sender was able to successfully send to the receiver, during some fixed interval of time.

Overall throughput can indicate the effectiveness of a TCP implementation at using the bandwidth
available at the bottleneck.

A detailed description of the ns implementation of pacing is provided in Appendix A.

4.2 Single-Stream Pacing Performance

We began our study of TCP pacing hy looking at the performance of classic TCP over a single bottleneck

link. The network topology that we used for the sinmlations is given in Figure 1, and the the sinmlation

parameters are given in Table 2. Figure 5 shows the results of this simulation using a paced, classic TCP

sender. The paced TCP sender is able to smoothly able to increase its congestion window to the ideal,

maxinmm window of 91 packets during slow-start, without encountering a false-bottleneck. The absence

of the false-bottleneck can be explained by the fact that the bottleneck queue never grows beyond zero

packets. As described in Equation 4, however, a TCP sender with alms timer can only support window

sizes of 83 or 100 packets. This explains why the number of packets in the pipe never reaches beyond 83
packets per RTT.

NAS A/CR---2000- 209416 10

Parameter

Round-trip Delay

Bottleneck bandwidth

Queueing discipline

Packet size

Bottleneck queue length

Timer granularity

Burst-size

Setting

500ms

1.5 Mb

Drot)-tail

1024 bytes

10 packets

1Ills

1,2 packets

Network capacity/ 91 packets
TCP maximum window size

Table 2: Sinmlation setup for a TCP connection rmming over a bottleneck link. as depicted in Figure 1.

100

gO

80

7O

6O

so
40

30

20

10

0

Single Pacecl Stream Over 500 ms detay link, max queue=10

i i = i i i i i i

ideal window

in _'JDe
queue len_Fl

1 2 7 8 93 4 5 6 10

Time in RTTs (1 RTT = 500 ms)

Figure 5: Queue size and window evolution for a single TCP connection running over a bottleneck link.

The TCP congestion window is able to ramp up to the ideal size of 91 packets without encountering a
false-bottleneck because the queues in the network never build up. The 1ms timer used in this simulation

is only able to sustain a rate of 83 packets per 1RTT. less than the 91 packets per RTT that could be

sustained by the full capacity of the network.

NASA/CR--2000-209416 11

Single PaceO Stream Over 500 ms delay hnk, max queue=lO

,oo[....... // '
8o_ / I wi._ows,z,-----i-

t _ L

0 1 2 3 4 5 6 7 8 9 10

Time in FIT's (1 RTT = 500 ms)

Figure 6: Paced TCP over a 1.5 Mb link with 500ms I/TT and maximunl window 100. The paced TCP

sender is able to ramp all the way up to the maximum window size of 100 packets/RTT. This window

size is larger than the ideal window size. causing packets to build up in the bottleneck queue.

Figure 6 shows the same simulation, except with the TCP sender maximum window set t.o 100. As

this figure illustrates, this TCP sender is again able to smoothly able to ramp up to the maximum

congestion window in a little over 7 round-trips. In contrast with Figure 5, the line representing the

packets in the pipe does eventually rise to meet the line representing the congestion window. TILe
penalty for increasing the maximum window to 100. beyond the ideal window of 91, manifests itself in

the evolution of the bottleneck queue length. At 100 packets/RTT, the TCP sender sends packets to

the receiver at a rate faster than tile bottleneck server can sustain. Though it never actually exceeds tile

capacities of tile queues, the queues stay almost constantly full at a level of 8 packets every RTT.

By increasing the size of the bursts paced out b.v TCP. we can exactly match the capacity of the

network, rather than overutilizing or underutilizing it. Figure 7 shows the same sinmlation as Figure 5,

this time with the TCP burst size set. to 2 packets. Following Equation 4. a TCP sender with a .001

second timer and a burst size of 2 packets can sustain a windows of size 90 packets, close to the ideal

window size of 91 packets. As the figure illustrates, the line representing the packets in the pipe again

rises to meet the line representing the congestion window. This time, however, the queues in the network

never build up to more than 1 packet. Figure 8 shows a magnified view of the first few RTTs of this

connection. Instead of pacing out single packets, this connection paces out bursts of 2 packets. Every
time one of these 2-packet bursts enters the network, the the first packet enters service, and the second

packet waits in the queue for service. This behavior is reflected in the fact. that the line representing

queue length goes up to 1 every time the TCP sender sends out. a burst of packets.
Table 3 summarizes these results.

NASA/CR--2000-209416 12

Single Stream Over 500 ms delay link, max queue 5

100 i _ = i l l i k l

iqealw_ndow
90 ... •

7O

6O

3O

20

10 _-:-_ Jl" " window size

o _-_, ",1......,.........._............_. , _o.oa'.&,_._'°
0 1 2 3 4 5 6 7 8 9

Time in RTTs {1 RTT = 500 ms)

10

Figure 7: Paced TCP over a 1.5 Mb link with 500ms RTT and burst-size 2. Tile paced TCP sender

is able t.o increase tile congestion window to the ideal window size of 91 packets by pacing out bursts.

Every time the TCP sender paces out a 2-packet burst, the bottleneck queue grows t.o 1 packet..

12

10

6

4

2

0

Single Stream Over 500 ms delay link, max queue=10

i i =

wm_iow size --

kn pipe
queue length

1 2 3 4

Time m RTTs (1 R'-r = 510 ms)

Figure 8: Magnified progress of paced TCP over a 1.5 Mb link with 500 ms RTT and burst-size 2. Every

time the TCP sender paces out a 2-packet burst, the bottleneck queue grows to 1 packet. The number

of packets in the pipe decreases every time the sender receives an acknowledgment for a packet, which

accounts for the dips in the corresponding line in the graph.

NASA/CR--2000-209416 13

Maximumwindow
91
91
91
100
91

91(withprobes)

Pacing
N
N
Y
Y
Y
Y

Queuelength
100
10
10

Burst-size
NA
NA

Throughput
1734
1450
1614

Averagequeuelength
(non-empty)

.2(14.9)
.1(1.3)
o (o)

10 1 1771 6.3 (6.6)

10 2 1728 0 (1)

10 2 1750 0 (1)

Table 3: Summary of results for single-link simulations. These results show that a paced TCP connection

with burst-size 2 can achieve close to the same throughput as an unpaced TCP connection running over

a bottleneck with large queues. The rightmost column describes the average length of the bottleneck

queue over time. The average non-empty queue length appears in parentheses.

NASA/CR--2000-209416 14

/ ,,,

/ sender 1

1 I _\

!
/z

i/ sender 3 ,

bottleneck queue

/'(_ivo, !t

, bot_eneckl .I rece,.e_2_

I receiver 3 J

Figure 9: Network topology for multiple stream simulations.

Average queue length

Algorithm Packets sent (non-empty)

Classic TCP unpaced 36799 1.1 (2.6)

paced 41065 9.8 (2.2)

TCP-Reno unpaced 35711 1.0 (2.6)

paced 39515 .86 (2.0)

TCP-FACK unpaced 42750 1.4 (2.7)

paced 45098 1.2 (2.3)

Table 4: Simulation results for different algorithms running over a shared bottleneck link. The rightmost

eolunm describes the average length of the bottleneck queue over time. The average non-empty queue

length appears in parentheses.

4.3 Multiple Stream TCP Performance

For our second set of simulations, we examined the performauce of paced TCP when several streams

compete for access over the same bottleneck link. The topology we used for these sinmlations is depicted

in Figure 9. We used the same set of parameters given in Table 2, setting the maximmn window size

for each TCP sender to 91 and the pacing burst-size to 2. Vfe staggered the start times for each TCP

connection, starting each commction 60 seconds after the last connection, and then letting each stream

run for 180 seconds. We staggered the streams in order to force the TCP connections to adjust to both

the arrival and relief of congestion 1. We ran each simulation 20 times and averaged the results together
to obtain our results.

Table 4 shows the simulation results for 3 different TCP algorithms, with or without pacing. The

results show that pacing improves all three TCP algorithms, with classic TCP and TCP-Reno achieving

the most dramatic improvements from pacing. TCP-Fack with pacing achieves the highest throughput

of all the algorithms, a 1.23x improvemem over unpaced, classic TCP.

4.4 Packet-Pair Probes

For our simulation, we examined the use of packet-pair probes in a paced TCP implementation. In

this simulation, TCP uses packet probes t.o determine the bottleneck bandwidth during slow start, and

instantaneously sets the congestion window to match the bottleneck rate. We ran this version of TCP

1 During the course of our study, we discovered that TCP senders would synchronize themselves to the bottleneck server

due to the lock-step nature of the simulator. As a result, the TCP connection that arrived first at the bottleneck would

use the full capacity of the link and never yield to other connections, We introducing an infrequent, millisecond jitter into

the bottleneck server to circumvent this problem.

NASA/CR--2000-209416 15

0=

100

90

80

70

6O

50

40

30

20

10

o

Single Stream Over 500 ms delay link, max queue 5

I I

ideal window

t

/
t

!

/
#

/

J

/
}

/
estimate window=-91

..... t |

window size --
in pipe

queue length

0 1 2 3 4 5

Time in RTTs (1 RTT = 510 ms)

Figure 10: Evolution of a TCP connection that uses packet-probes to estimate tile bottleneck bandwidth
during slow-start. After 3 round-trip times, the TCP sender estimates the ideal congestion window to
be 91 packets, and paces out 91 packets over the course of a single round-trip.

over the single-stream topology given in Figure 1, with the TCP burst-size set to 2 packets. Figure 10

depicts the results of this simulation. After 3 round-trip times, TCP is able to correctly estimate tile

bottleneck congestion window to be 91 packets, and sets the window to be 91 at that time. Because the

system paces out its packets, the TCP sender then proceeds to pace out the 91 packets over the course of

a single RTT. and renmins at that window for the rest of the connection. Note that an unpaced version

of TCP would respond to tile increase in window size by instantaneously injecting 91 packets into the

network. Since the bottleneck queue can only accommodate 10 packets. 81 of these packets would be

dropped. A paced version of TCP, however, can accommodate such dramatic changes in the sender

window size. A sumnlary of the overall performance of this simulation appears in Table 3.

NASA/CR--2000- 209416 16

5 Discussion

In this paper, we described Paced TCP. a modified version of TCP that overcomes the problems of queue-

ing bottlenecks in wireless, high bandwidth-delay networks. A standard TCP implementation encounters

queueing bottlenecks when it. sends more packets in a single burst than can be stored at the bottleneck

queue. This problem is particular to high bandwidth-delay networks, because the queues in the network

are disproportionate to the size of the bursts that TCP sends out. Paced TCP circumvents queueing

bottlenecks by sending out fl'equent., small bursts where sta.ndard TCP would send out infl'equent, large

bursts. We have shown how it. is possible to implement paced TCP using a modified leaky-bucket scheme

and discussed some of the trade-offs involved in using timers to implement pacing. Finally. we have pro-

vided simulation data showing that pacing can significantly improve the l)erformance of three different

flavors of TCP, with TCP-FACK yielding a 1.22x performance improvement over unpaced, classic TCP.

Though this does paper does answer many questions about TCP pacing, it does raise others. One

attractive feature of paced TCP is that it decouples TCP's algorithms from the length of the queues

in the network. If all TCP implementations were paced, network designers would never have to guess

at buffer sizes based on the vague, ever-changing characteristics of the entire network. Following this

line of reasoning, however. TCP's current implementation of receiver flow-control makes little sense. At

the begimfing of every TCP connection, the TCP receiver tells the sender the number of packets it can

handle in a single burst, the _'maximum receive window". The TCP receiver may change its window

dynamically, and the TCP sender must respect, this window. As originally conceived, the receiver can

use this window to prevent the TCP sende," from sending too quickly and from overrunning its queues.

Unfortunately, as is the case with routers within the net.work. TCP receivers often set the maximum

receive window to a value that is disproportionately low for a high bandwidth-delay network, sometimes

to as little as 5 to 12 packets. If a TCP connection sets its maximum congestion window to 5 packets

and the ideal window for the network is 91 packets, the sender will be forced to grossly underutilize the

capacity of the network. This window limitation seems particularl.v point.less since, as we have shown.

a paced version of TCP can increase its window to 91 packets without loading up the queues in the

network at all. Some compromise must exist between restricting the sender too much and not restricting

it at. all. Automatic TCP buffer tuning [10] and packet-pair probes are two techniques that may hold

keys t.o overcoming this problem. We will continue pursuing this question in our future investigation of

paced TCP.

NASA/CR--2000-209416 17

References

[1] A. Demers, S. Keshav. and S. Shenker. Analysis and simulation of a fair queueing algorithm. Journal
of Internetworking Research and Experience, September 1990.

[2] .Jane)" C. Hoe. Improving the start-up behavior of a congestion control scheme for tcp. In ACM
SIGCOMM, 1991.

[3] Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM. 1988.

[4] Van Jacobson. Modified congestion avoidance algorithm. Note to the end2end-interest mailing
list. April 1990.

[5] Srinivasan Keshav. A control theoretic approach to flow control. In ACM SIGCOMM. 1997.

[6] Matthew Mathis and Jamshid Mahdavi. Forward acknowledgment: Refining tcp congestion control.
ACM SIGCOMM, 26(4), October 1996.

[7] ns-2 Network Sinmlator. http://www-mash.cs.berkeley.edu/ns/, 1998.

[8] C. Partridge. Ack spacing for high delay-bandwidth paths with insufficient buffering. End-To-End
Research Groupl:lequest for Comments: DRAFT, September 1998.

[9] Craig Partridge and Timothy J. Shepard. Tcp/ip performance over satellite links. IEEE Network,
September/October 1997.

[10] Jeffrey Semke, Jamshid Mahdavi, and Matthew Mathis. Automatic tcp buffer tuning. ACM SIG-
COMM. 28(4), October 1998.

NASA/CR--2000-209416 18

A Appendix: Detailed ns Implementation

The standard ns implementation includes a TCP '>kgent'" C++ class that sinmlates tile actions of a

TCP sender/receiver for a single flow at a single node. It also includes several sub-classes of TCP agents

to simulate different variations of TCP, including TCP-Reno and TCP-FACK. In order to augment the

standard ns TCP implementation with pacing, we created a new "Pacer" class that can be used by any

TCP agent to implement pacing. Tile Pacer uses the following state-variables:

1. Maximum burst size. The maximum sized burst that we are allowed to send. This variable is also

directly accessible from the Tcl interpreter.

2. Timer period. The granularity of the timer. The maximum rate at which we will be able to send

packets will t)e be the maximum burst size divided by the timer period. This variable is also

directly accessible from the Tcl interpreter.

3. Pacing timer. We set this timer to expire whenever we want to refill the bucket at some time in
the future.

4. Last refill time. This is tile time at which the bucket was refilled. Tile TCP flow is allowed to use

up all the tokens in the bucket, but no more, until the next refill time.

5. Next refill time. This is the next time at which the flow's bucket will be refilled. This value is

constantly recalculated based on TCP's dynainically changing send rate.

6. Tokens. Tile amount of tokens in the bucket. This value is invalid if the current time is greater
than the next refill time.

7. Round-trip time. A cached cop)" of tile last packet round-trip-time. This round-trip time is used
to estimate the current send rate, which is then used to calculate the bucket refill times.

Typically, a paced TCP agent would create a new Pacer object at start-up, and then call the following

functions, provided by the pacer:

1. avai].ab].e_tokens. This function calculates the amount of tokens currently available based on the

beginning of the last bucket refill-time, the current time, tim next refill-time, and the current send
rate. If the Pacer has not yet past the next refill-time, this function returns the amount of tokens

left within the bucket. If it has past the next refill-time, this flmction fills up the bucket, resets

the last and next refill-times, and returns full tokens to the caller.

2. adjust_tokens. TCP calls this function whenever it sends out packets. First, this function will

decrement the available tokens in the bucket by the mnnber of packets just sent. If the caller

indicates that it still has packets to send, this function will then schedule the timer to refill the
bucket at the next refill time.

3. expire. This function is called whenever the pacing timer expires. This timer is set to expire at
the next bucket refill-time, but only when there are packets awaiting tokens. This flmction calls

the TCP function send_much to send out more packets.

4. rtt_update. Tile default TCP Agent calls this flmction whenever it gets a new packet with a new
a new round-trip time (RTT). We modify this function to first cache the RTT before performing

any additional processing.

NASA/CR--2000-209416 19

In orderto iml)lementa pacedversionof ns's TCP baseclass,wesimplymodifiedoneflmction.
send_much,send.muchis thefunctionthatthedefaultTCPagentusesto sendoutawindowofpackets.
At thebeginningof thefimction,send_muchcalls the function available_tokens() to find out how

many tokens are currently left in the bucket. Later. in the body of the loop that TCP usually uses to
send out a window of packets, send_much adds an extra check to see whether it has reached its allotted

amount of tokens. Finally, before exiting, send_.much calls the function adjust_tokens to update the

token coum and schedule the pacing timer to expire, if necessary. We were able to implement paced

versions of TCP-Reno and TCP-FACK by making analogous changes to these classes.

NASA/CR--2000-209416 20

RE PORT DOCU M ENTATION PAG E Fo_ Approved
OMB No. 0704-0188

Public reporting burden for t_is collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gatnenng anO maintaining the data needed, and completing anO reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington HeadQuarters Serv=ces, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Su,te 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave b/ank)

I 4. TITLE AND SUBTITLE

A Simulation Study of Paced TCP

2. REPORT DATE

January 2000

6. AUTHOR(S)

Joanna Kulik, Robert Coutler, Dennis Rockwell, and Craig Partridge

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

B BN Technologies

10 Moulton Street

Cambridge, Massachusetts 02138

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135-3191

3. REPORTTYPEAND DATES COVERED

Final Contractor Report

5, FUNDING NUMBERS

WU-632-50-51-00

N00600-92-C-3377

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-12041

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR--2000-209416

11. SUPPLEMENTARY NOTES

Project Manager, William D. Ivancic, Communications Technology Division, NASA Glenn Research Center,

organization code 5610, (216) 433-3494.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Categories: 03, 04, 17, and 32 Distribution: Nonstandard

This publication is available from the NASA Center for AeroSpace Information, (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Mmxlmum 200 words)

In this paper, we study the performance of paced TCP, a modified version of TCP designed especially for high delay-

bandwidth networks. In typical networks, TCP optimizes its send-rate by transmitting increasingly large bursts, or

windows, of packets, one burst per round-trip time, until it reaches a maximum window-size, which corresponds to the

full capacity of the network. In a network with a high delay-bandwidth product, however, TCP's maximum window-size

may be larger than the queue size of the intermediate routers, and routers will begin to drop packets as soon as the

windows become too large for the router queues. The TCP sender then concludes that the bottleneck capacity of the

network has been reached, and it limits its send-rate accordingly. Partridge proposed paced TCP as a means of solving

the problem of queueing bottlenecks. A sender using paced TCP would release packets in multiple, small bursts during a

round-trip time in which ordinary TCP would release a single, large burst of packets. This approach allows the sender to

increase its send-rate to the maximum window size without encountering queueing bottlenecks. This paper describes the

performance of paced TCP in a simulated network and discusses implementation details that can affect the performance

of paced TCP.

!14. SUBJECT TERMS

PrOtocol; TCP; Satellite

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITYCLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

26
16. PRICE CODE

AQ_
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

